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Black body &black body radiation
When radiant energy falls on the surface of any body, the radiation is 

a) Reflected

b) Absorbed

c) Transmitted

We find that:

• Whole energy is not absorbed 

• If radiation is allowed to fall on a blackened material surface or 

carbon black, it is found that energy is completely absorbed

• A body which completely absorbs the radiant energy falling on it is 

called a perfectly black body.



• The absorption is found to be more perfect if we take a hollow 
sphere 

blackened on the inside and having a small hole for the entry of 

radiation. 

• The inside of this double walled 
metallic sphere                                     metallic sphere is coated with 

• lamp black.

• A black body is a perfect 
absorber                                                 absorber and a perfect radiator.

• The radiation thus emitted is called Black Body Radiation.



• It was found that radiation emitted by Black Body is not continuous.

Max Planck put forward the theory that Black Body cannot have any 

amount of energy.

He proposed that:

‘Energy is emitted or absorbed NOT continuously but discontinuously

in the form of packets of energy called quanta’.

The energy of each quanta is given by the relation E=hν

where ν is the frequency of radiation and ‘h’ is the Planck’s constant.

The value of Planck’s constant is 6.6X10-34J sec



• Total energy emitted or absorbed is either 1 hν or 2hν … …nhν.

THUS FROM BLACK BODY RADIATION WE CAN CONCLUDE THAT

RADIATION HAS PARTICLE LIKE NATURE.

QUANTA IS THE PARTICLE



Photoelectric effect
When a beam of light with frequency greater than or equal to a 

particular value is allowed to strike the surface of a metal, electrons are 

ejected from the surface of the metal. This is called the Photoelectric 

Effect.



1. The electrons are ejected only if the frequency of the incident light 

is equal to or greater than a minimum value, called the

Threshold frequency (ν0)t . Energy associated with threshold 

frequency is called the Work Function.

2. The electrons are emitted instantaneously i.e., there is no time 

interval between hitting of the metal surface by the light and 

emission of electrons.

3. The kinetic energy of the emitted electrons depends upon the 

frequency of the incident light.

4. The number of electrons emitted is proportional to the intensity

of incident light.



• Einstein applied Planck’s quantum theory to photoelectric effect.

• According to this theory, each quantum of light called ‘photon’ has 

energy equal to hν.

• When the photon hits the metal atom, it transfers energy to the 

electron. 

• Energy equal to the threshold value is used for ionizing (release of 

electron) and remaining energy is converted to kinetic energy of

electron.

• The quantity hν0 is called the Work Function and is equal to the 

ionization energy of the metal atom.



Thus,
hν= hν0+ 𝟏

𝟐
mv2

The x-axis shows the frequency
of radiation while the y-axis shows
the kinetic energy of electrons.
The y-intercept denotes the work
Function. 
Photoelectric effect showed a 
“Particle like nature” of light 
or radiation.



COMPTON EFFECT
A.H Compton observed that if monochromatic X-rays are incident on  

a material, like graphite, the scattered radiation contained not only the 

wavelengths of the incident X-rays but also contained radiations of 

higher wavelength. 

This effect is called Compton Effect.

The classical theory failed to explain this effect.

The quantum theory could, however, explain this effect.

As the scattering is produced by electrons, it was suggested that it 

must be due to collision between the X-ray photon and the individual 

electron that must have resulted in the increase of the wavelength of

the scattered X-Rays. 



COMPTON EFFECT

If      is the wavelength of the incident
X-ray photon, and     ‘ the wavelength 
of the scattered X-ray, then the 

difference
Δ λ=λ’-λ=2h/mc X (sin2ϴ/2)
where ϴ is the angle between the   
incident and scattered X-rays.

Δ λ is called the Compton shift.



COMPTON EFFECT
The scattered radiation experiences a wavelength shift that 

cannot be explained in terms of classical wave theory.

The effect is important because it demonstrates that light 

cannot be explained purely as a wave phenomenon.

Light must behave as if it consists of particles in order to explain   

the low-intensity Compton scattering.

Compton's experiment convinced physicists that light can  

behave as a stream of particles whose energy is proportional to  

the frequency.

LIGHT HAS WAVE LIKE NATURE AS WELL AS PARTICLE LIKE NATURE.



DUAL NATURE OF LIGHT
It was clearly known that radiation had wave like nature.

The three observations, Black body radiation, Photoelectric effect

and Compton effect gave a new insight to the particle like nature

of radiation.

Properties like diffraction, interference could be explained by the 

wave like nature of radiation but it could not explain black body 

radiation, photoelectric effect and Compton effect.

These effects could be explained only by particle like nature of 

radiation. That is, radiation was in packets of energy, called the Photon.



DUAL NATURE OF MATTER
Discovery of dual nature of radiation had interesting consequences 

for a similar concept for matter.

Louis de Broglie , a French aristocrat, connected the mass energy 

equivalence of Einstein and Planck’s theory of quanta.

E=mc2

and                     E=hν

Equating the two, we get

mc2 = hν

Putting ν=c/λ,        mc2 = h c/λ

mc=h/λ

p=h/λ              …………. de Broglie Equation



Dual nature of matter: de Broglie equation
Through the work of Max Planck, Albert Einstein, Louis de 

Broglie, Arthur Compton, Niels Bohr, and many others, current 

scientific theory holds that all particles exhibit a wave nature 

and vice versa.

This phenomenon has been verified not only for elementary 

particles, but also for compound particles like atoms and even 

molecules. For macroscopic particles, because of their 

extremely short wavelengths, wave properties usually cannot be 

detected.

De Broglie was awarded the Nobel Prize for Physics in 1929 for 

his hypothesis
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https://en.wikipedia.org/wiki/Arthur_Compton
https://en.wikipedia.org/wiki/Niels_Bohr
https://en.wikipedia.org/wiki/Macroscopic
https://en.wikipedia.org/wiki/Nobel_Prize_for_Physics


Heisenberg’s uncertainty principle
According to classical mechanics, we can determine simultaneously

and precisely both position and momentum of a particle at any point in 

space.

However, with particle like and wave like nature being equally 

important, the properties of microscopic bodies are different from 

macroscopic bodies.

As a result, it is not possible to determine accurately the position and 

momentum of a microparticle simultaneously.



Heisenberg’s uncertainty principle
Introduced first in 1927 by the German physicist Werner 

Heisenberg, the uncertainty principle states that the more 

precisely the position of some particle is determined, the less 

precisely its momentum can be predicted from initial conditions, 

and vice versa.

This gives rise to an uncertainty in either the position or 

momentum, which is, however due to interaction of the system 

and the measuring technique.(That is, light)

This uncertainty is, therefore, a fundamental limit of nature 

and holds for a pair of conjugate variables like position and 

momentum, Energy and time, and angular momentum and 

its angular position.

https://en.wikipedia.org/wiki/Werner_Heisenberg
https://en.wikipedia.org/wiki/Werner_Heisenberg


Heisenberg’s uncertainty principle
Heisenberg showed that the product of uncertainty in position (Δx)
and the uncertainty in momentum (Δp) is equal to or greater than 
h/4π

(Δx). (Δp) ≥ h/4π (1)
This is known as Heisenberg’s Uncertainty Principle
Heisenberg showed that a similar relationship existed between Energy 
and time.  

(ΔE). (Δt) ≥ h/4π (2)
ΔE is the uncertainty in the energy and Δt is the uncertainty in lifetime.
If a state has an infinite lifetime, Δt=∞ and the precise value of energy
of the system, we say that the system is in a stationary state.

But if the lifetime is finite, the precision with which the energy may be
determined is limited.



Heisenberg’s uncertainty principle
Because of the small value of ‘h’, the uncertainties are not detectable 

for macroscopic objects but for electrons, atoms and molecules, the 

Heisenberg’s relations are significant.

These relations indicate that it is meaningless to ask about the exact 

position and exact velocity of an electron in an atom or even to ask 

about the exact energy of an atom in an experiment in which lifetime 

of that atomic energy state is finite.

The uncertainty Principle is a direct consequence of dual nature of 

matter.



Heisenberg’s uncertainty principle
Since the dual nature is evident only in subatomic particles, these 

particles show an uncertainty which is not shown by macro bodies.

The microparticle itself cannot have a definite position and definite 

momentum simultaneously.

Therefore we cannot draw a trajectory of a microparticle in contrast to 

macroparticle.

Hence , the Bohr concept of ‘orbit’ of an electron becomes 

unacceptable.

The Uncertainty Principle does not hold for variables which are not 

conjugate.



numericals
Q 1. What is the product in uncertainty in position and velocity for an electron 

of mass 9.11X10-31 kg according to Heisenberg Uncertainty Principle? Compare 

with a ball of mass 100 gm.

A. For the electron (Δx). (Δp) ≥ h/4π

(Δx). (mΔv) ≥ h/4π

(Δx). (Δv) ≥ h/4πm

=6.627X10-34 Js

4X3.14X 9.11X10-31kg

=5.78X10-5 m2s-1

For the ball, (Δx). (Δv)= 6.627X10-34 Js  =5.27X10-34 m2s-1

4X3.14X0.1kg



From a comparison of uncertainties of the two particles it is evident that the 
uncertainty of the macroparticle is so small so as to be negligible. However, 
for the microparticle, the uncertainty is higher considering the mass of the 
particle.
Q 2. Calculate the minimum uncertainty in the position or velocity for the 
following cases. Comment
a) The position of an electron of mass 9.1X10-31 kg is known within 1mm
b) An automobile of mass 500 kg moving with speed 50±0.001 km/hr
Ans. (a) The uncertainty in velocity can be written as 

(Δv) = h/4πm(Δx)
=6.627X10-34 Js
4X3.14X 9.1X10-31kg X10-3 m

=5.795X 10-2 ms-1

This uncertainty in velocity is significant for the electron



(b) The uncertainty in velocity of the automobile is 

(Δv)=0.001 km/hr=2.778X10-4 ms-1

(Δx) = h/4πm(Δv)

=6.627X10-34 Js

4X3.14X 500kg X 2.778X10-4 ms-1

=3.796X10-34 m

This value is negligible as compared to mass and velocity of the 

automobile.



The Schrödinger   wave equation
Recognition of de Broglie relationship and the Uncertainty Principle

should prepare our minds to accept that Newton’s mechanics is not 

suitable for predicting the position and momenta of microscopic 

particles like electrons, atoms and molecules.

A new approach was needed to understand the behaviour of atomic, 

subatomic or molecular species. 

We may think about the probability of finding a particle in a region of 

space rather than assign it to a given position. 

We may also think in terms a particle possessing an ‘expectation’ value

of energy instead of a precise value of energy as was done by Bohr.



The Schrödinger   wave equation
Schrodinger reasoned that a bound electron behaves like a

‘standing wave’ . The wave equation for a standing wave was known 

Already. By analogy he wrote down the famous equation from 

mathematical intuition.

SCHRODINGER EQUATION

If electrons have wave properties then there must be a wave equation 

And a wave function to describe the electron waves just as the waves 

of light, sound and strings are described.

Let us consider the motion of a string which is held fixed at two ends.



The Schrödinger   wave equation
It is possible to excite with care certain kinds of vibrations in which all 

points of the string are at their maximum displacement at the same 

time and have maximum velocity at the same time.

If the displacement occurs in the y-direction, these functions can be 

described by functions of the form:

𝑦 𝑥, 𝑡 = 𝑓 𝑥 . ∅ 𝑡 (1)

where f(x) is independent of t and ∅ 𝑡 is independent of x.

Such vibrations are called normal modes of vibration.

The wave equation has the form:
𝒅𝟐𝒚

𝒅𝒙𝟐
=
𝟏

𝒄 𝟐.
𝒅𝟐𝒚

𝒅𝒕𝟐
(2)



Where c is the velocity of the wave. Differentiating y wrt x and t twice,

we get                      
𝒅𝒚

𝒅𝒙
= ∅ 𝑡 .

𝒅𝒇(𝒙)

𝒅𝒙
𝒅𝟐𝒚

𝒅𝒙𝟐
= ∅ 𝑡 . 

𝒅𝟐𝒇(𝒙)

𝒅𝒙𝟐
(3)

Differentiating with respect to t, we get
𝒅𝒚

𝒅𝒕
= 𝑓(𝑥).

𝒅∅ 𝑡

𝒅𝒕
𝒅𝟐𝒚

𝒅𝒕𝟐
=𝑓(𝑥).

𝒅𝟐∅ 𝑡

𝒅𝒕𝟐
(4)

If the wave is assumed to be travelling along the x-direction with a 

frequency ν then since the wave must start and terminate at the ends

and therefore, it has to be a sine wave.



Let it be expressed as:

∅(t)=Dsin2πνt                         

𝒅∅(t)
𝒅𝒕

=2πνD.cos2πνt                                              

and    
𝒅𝟐∅(t)
𝒅𝒕𝟐

=-(2πν)2D.sin2πνt             

𝒅𝟐∅(t)
𝒅𝒕𝟐

=-(2πν)2. ∅(t)                           (5)

Substituting (5) in equation (4), we get
𝒅𝟐𝒚

𝒅𝒕𝟐
=−𝑓(𝑥).(2πν)2. ∅(t)                           (6)

Substituting (6) in (2), we get
𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−1

𝑐2
.f(x).(2πν)2 . ∅(t)                              



𝒅𝟐𝒚

𝒅𝒙𝟐
= 

− 4π2ν2.f(x) ∅(t)
c2

𝒅𝟐𝒚

𝒅𝒙𝟐
= 

−4π2ν2.y
c2 (7)

Now, using the relationship     ν=c/λ (8)
and λ=h/p=h/mc                                 (9)

and substituting in (7), we get:

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

c2 .
c2

λ2.y 

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

λ2
.
y



𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

λ2 .y

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

.
(mv)2

h2
.y

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

.
m mv2

h2 .y

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−4π2

.
2m.mv2

2h2 .y

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−8mπ2

h2 .
mv2

2
.y                               (10)

Since in a string, the total energy is the sum total of kinetic and 

potential energies, the total energy E can be expressed as a sum of

Potential energy U and KE=1/2 mv2

E=U+ 1/2 mv2                                                                   (11)



Substituting (11) in (10), we get

𝒅𝟐𝒚

𝒅𝒙𝟐
= 
−8π2m

h2 (E-U).y 

Rearranging, we get
h2

−8π2m
𝒅𝟐𝒚

𝒅𝒙𝟐
= (E-U).y

h2

−8π2m
𝒅𝟐𝒚

𝒅𝒙𝟐
= E.y- U.y

h2

−8π2m
𝒅𝟐𝒚

𝒅𝒙𝟐
+ U.y = E.y                              (12)



We had assumed the wave to be travelling along x-direction.
Let us now consider a wave travelling in any direction.
Therefore, instead of y let us denote the wave by Ψ where Ψ is a 
Function of x,y,z and t or Ψ(x,y,z,t).
Therefore for a general wave we can write equation (12) as

−h2

8π2m
[ 
𝜕2Ψ
𝜕𝑥2

+
𝜕2Ψ
𝜕𝑦2 +

𝜕2Ψ
𝜕𝑧2

]+UΨ=EΨ                     (13)

where  
𝜕2Ψ
𝜕𝑥2

, 𝜕2Ψ
𝜕𝑦2

, 𝜕2Ψ
𝜕𝑧2

are partial derivatives of Ψ as Ψ is a function of x,y,z 

and t.
Equation (13) can be rewritten as

−h2

8π2m
[ 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2+
𝜕2

𝜕𝑧2
] Ψ +UΨ=EΨ             (14)



−h2

8π2m
[ 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2+
𝜕2

𝜕𝑧2
] Ψ +UΨ=EΨ                  (14)

−h2

8π2m
.   2Ψ +UΨ=EΨ                                        (15)

Equation (14) is the expanded form of Schrodinger’s equation while 

Equation (15) is the condensed form of this equation. 

The term   2 is called the Laplacian operator and is denoted by 

2    =  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2+
𝜕2

𝜕𝑧2

[  
−h2

8π2m
.   2 +U] Ψ=EΨ                               (16)



[
−h2

8π2m
.   2 +U] Ψ=EΨ                               (16)

The above equation can be condensed as 

ĤΨ=EΨ                                                (17)

where Ĥ is called the Hamiltonian operator, expressed as a sum of

two operators, the Laplacian operator     2   and the potential energy 

operator U.

where           Ĥ   = 
−h2

8π2m
( 2)+U



Interpretation of the wave function
The wave function is a kind of amplitude function. In classical 

mechanics the square of the wave amplitude , associated with an 

electromagnetic radiation is proportional to the intensity of radiation.

A2 α I

By analogy, the square of the absolute value of Ψ is a measure of the 

intensity or particle density.

However, our present idea of Ψ in quantum mechanics is based on

The uncertainty principle. According to this principle, it is not possible 

to simultaneously measure the position and momentum of a 

microparticle such as an electron precisely.



Interpretation of the wave function
According to Max Born, IΨI2 should be treated as proportional to the 

probability of finding a particle at a given point at any given time.

IΨI2 α probability

Since the probability of finding a particle at a given point must be 

real, generally Ψ*Ψ is taken as the measure of finding a particle at any 

point , if Ψ is a complex function.

The function Ψ* is the complex conjugate of Ψ and their product

Ψ*Ψ will always be a real non negative quantity.



Interpretation of the wave function
• Generally, the probability of finding  particle in a certain volume 

element dxdydz is expressed as Ψ*Ψdxdydz or IΨI2dxdydz and the 

probability of finding a particle per unit volume is represented by

Ψ*Ψ and is known as probability density. Very often dxdydz is 

abbreviated as dτ.

• The interpretation of  Ψ2 may be made more clear by considering a 

hypothetical experiment. Suppose we have an electron bound to the

nucleus of an atom. The position of this electron can be specified 

exactly by taking a 3-dimensional photograph. Since the electron is in

a state of continuous motion, a photograph taken a fraction of second 

later would show the electron in a new position.



If we take thousands of such pictures 
and we draw a diagram we shall find 
innumerable dots corresponding to 
different positions of the electron. This 
figure would look like a projection of 
the electron cloud around the nucleus
in the plane of paper.

It is obvious that the electron cloud 
would appear more dense in the regions
where the number of dots are more. In other words, the probability of finding 

the electron is maximum in that particular region.

The density of this charge cloud at any point corresponds to the probability 
density and is given by the square of the wave function, that is Ψ2



Properties of the wave function 
• The Schrodinger wave equation is a second order differential 

equation and has an infinite number of solutions.

• However, only a few solutions have any physical or chemical 
significance.

• The physical interpretation of IΨI2 dτ as a measure of probability 

of finding the particle in the volume element dτ implies that Ψ must

obey certain mathematical conditions.



Properties of the wave function 
These conditions are:

(1) Ψ must be single valued.

(2) Ψ and its first derivative must be continuous.

(3) Ψ must be finite for all physically possible values of x, y, z.

• Ψ must be single valued since the probability density of a particle at a 

point (x,y,z) must be unique.

• Ψ cannot be infinite at any point , otherwise probability density will 

be infinite.

• The requirement of continuity implies that there must not be any 

sudden changes in Ψ when the variables are changed.

Such a wave function is said to be a well behaved wave function.



Examples of wave functions



Normalized wave function
If Ψ*Ψdxdydz is the probability of finding the particle in the volume 

element dxdydz, then the sum of such probabilities over the whole 

space must be unity. This can be expressed mathematically as :

∞−
+∞

Ψ∗Ψdxdydz = 1                         (18)

Thus, for the electron, we can say that the total probability

Integrated over all space accessible to it is 1.

Such wave functions are said to be ‘normalized  wave functions’.

Very often Ψ is not a normalized wave function. But if Ψ is multiplied by 

A constant and its value chosen in such a way so as to satisfy equation (18),

Then the wave function becomes ‘normalized’.



PARTICLE IN 1-D BOX
Let us write the Schrodinger wave equation in one   

dimension.

-h2/8π2m. d2Ψ /dx2 +UΨ=E Ψ……(1)

If we consider an electron of mass m in a box of 1-

dimension whose length is a.

The particle can exist anywhere between x=0 to x=a.

Let the potential energy of the particle be zero inside 

this potential energy well and let the potential 

energy at x=0 and x=a  as well as outside the box be 

∞.



Thus the particle is unable to cross this energy barrier  

and go outside the box.

We can write the Schrodinger wave equation outside 

the box:

-h2/8π2m. d2Ψ /dx2 +∞Ψ=E Ψ…….(2)

Multiplying this equation (2) by -8π2m/h2, we get

d2Ψ /dx2 - 8π2m/h2 ∞Ψ= -8π2m/h2 E Ψ

This equation can be rearranged as

d2Ψ /dx2 = 8π2m/h2 ∞Ψ -8π2m/h2 E Ψ

= 8π2m/h2 (∞-E) Ψ……….(3)



For finite values of energy, equation (3) can be written 
as d2Ψ /dx2= ∞ Ψ……(4)

The left hand side of this equation has to be finite (Ψ is 
a well behaved wave function), so the right hand side 
has to be finite which is possible only if Ψ=0.

Thus Ψ=0 for all points outside the box and the particle 
cannot exist outside the box at all. 



When the particle is inside the box, the potential

energy is 0. Therefore the Schrodinger wave equation 

inside the box is :

-h2/8π2m. d2Ψ /dx2 =E Ψ……..(5)

Or    d2Ψ /dx2+ 8π2mE Ψ/h2=0………(6)

Let        k2=8π2mE/h2 ……………..(7)

Thus, rewriting we have

d2Ψ /dx2+ k2Ψ=0 …………(8)

•



Thus, rewriting we have

d2Ψ /dx2+ k2Ψ=0 …………(8)

This is a second order differential equation whose 
solution is of the form       

Ψ=A.sinkx + B.coskx …(9)

where A and B are arbitrary constants. 

The values of these constants can be calculated using 
the boundary conditions. 



Since the wave function is 0 outside the box,
It must also be 0 at the walls of the box as there must

be a continuity in the values of Ψ at the walls of the
box. 

Thus Ψ must be 0 at x=0 and x=a.
Thus at x=0 the equation (9) becomes:

0= Asink.0+Bcosk.0
0=Bcosk.0
Since cosk.0=1, therefore B=0

Thus equation (9) is reduced to 
Ψ=Asinkx ………..(10)



At the point x=a, equation (9) becomes:

0=Asinka

For this to be true, either A=0 or sinka=0

If A=0, the wave function will become 0                                   
everywhere inside the box which is not            
acceptable, so sinka=0

Since sinka can be zero for all values of sinnπ
Therefore sinka= sinnπ

Or ka= nπ

Or k= nπ/a ……..(11)



Where n is an integer having values 0,1,2,3…

Finally, the wave function for the particle inside the 
box becomes 

Ψ=A sinnπx/a ………(12)

Using equation (7) and (11), we get
(  nπ/a)2=8π2mE/h2

or  n2π2/a2 = 8π2mE/h2

or En =n2 h2/8ma2 ……….(13)
For a particle moving between two points , the 

energy is quantized.



For a particle moving between two points, the energy is 
quantized.

n En = n2h2/8ma2

1 h2 /8ma2

2 4h2 /8ma2

3 9h2 /8ma2

4 16h2/8ma2



No such discrete levels are expected from classical 
mechanics.

Although n=0 is permitted but it is not acceptable as it 
would make the wave function 0 everywhere inside 
the box.

Thus, lowest energy is obtained by substituting n=1 in 
equation (13).

This energy is known as the Zero point energy.

E zero point =  h2 /8ma2



The salient features of the particle in a box problem 
are summarized below.

1) The particle is not at rest even at 0 Kelvin.

Therefore, the position of the particle cannot be 
precisely known.

In such a situation, only the mean value of the kinetic 
energy can be known. Therefore, the momentum of 
the particle is also not known precisely.

The occurrence of zero point energy is in accordance 
with Heisenberg’s Uncertainty Principle.



2) The allowed integral values of n come naturally as a 
consequence of the solution and not as an arbitrary 
postulate as given by Bohr.

‘n’ is called a quantum number.

3) The energies of the electron are quantized. The only 
permitted values are as given in the table. 

4) Plots of Ψ and Ψ 2 for different values of n are as 
shown. 





The plots of Ψ and Ψ 2       for different values of n are 
as shown. The appearance of nodes and antinodes in 
the wave function is another striking feature of this 
problem.

The plots of Ψ versus x show that there are n-1 nodes 
( regions of zero amplitude and zero probability) in 
each wave function. The antinodes are regions of high 
probability e.g. at x=a/2, in case of Ψ1 and at x=a/4 
and 3a/4 in case of Ψ2.

There are nodal points in between positions other than 
x=0 and x=a



5)  The probability density Ψ 2 has the same number of 
maxima as the quantum number ‘n’.

For n=2, the probability of finding the particle at the 
centre of the box is zero, which is quite different from 
the classical result.

6) As we go to higher energy levels with more nodes, 
the maxima and minima of probability curves come 
closer together and the variations in probability along 
the 1-d box become undetectable. 

For higher quantum numbers, we approach the 
results of uniform probability density.



This is in agreement with ‘Bohr Correspondence 
Principle’. According to this principle, the quantum 
mechanical result must go over to classical mechanics 
when the quantum number describing the system 
becomes very large.

7) The energy expression En =n2 h2/8ma2 shows          
that energy is inversely proportional  to a2 i.e., 
square of the length of the box.

Longer the box, lower will be its energy.
More localized the electron, higher will be its energy.



In chemical systems , larger the extent of delocalization, 
more stable is the system energetically. ( For example, 
benzene and other conjugated systems.)

8) At a first glance, the energy expression is inversely 
proportional to the mass of the particle. It seems to 
contradict the fact that kinetic energy is proportional to 
mass of the particle.

However, if we understand that submicroscopic particles 
travel close to the speeds of light, we can understand 
this contradiction. 



• The energy expression suggests  that the lighter particles 

will have velocities close to the velocity of light and 

heavier particles will have lower velocities.

• This would suggest that β-rays would have higher 

velocities than α- rays.



Normalization of the wave function
We have not yet determined the value of arbitrary constant A of the 

wave function Ψ=A sin nπx/a. 

This is calculated by normalizing the wave function.

Applying the normalizing condition, we get

Ψ∗Ψdx=1                                       (14)

Substituting the wave function in the above equation we get

0
𝑎
𝐴2sin2 nπx

a
dx=1

A2 0
𝑎

sin2 nπx
a

dx=1



SIMPLE TRIGONOMETRIC EXPRESSIONS 

cos (A+B)=cosAcosB-sinAsinB

Therefore,            cos2A=cos2A-sin2A

cos2A=(1-sin2A)- sin2A          as sin2A+cos2A=1

cos2A=1-2sin2A

2sin2A=1-cos2A

sin2A=1/2(1-cos2A)



A2

2
0
𝑎
(1 − 𝑐𝑜𝑠2nπx

a
)dx=1                     …….. sin2ϴ=1/2(1-cos2ϴ)

A2

2
x −

𝑎

2𝑛π
sin 2nπx

a
=1

A2

2
(𝑎 − 0) −

𝑎

2𝑛π
(𝑠𝑖𝑛2𝑛π − 𝑠𝑖𝑛0) =1

aA2

2
=1

A2=
2

𝑎

A= 2/𝑎 ……..(15)

Putting the value of A in equation (12),

Thus wave function becomes Ψ= 𝟐/𝒂 sin 
nπx
𝒂

a

0



Macroparticle vs microparticle

You may make an interesting comparison between the results of 

particle-in- a –box problem and a circus girl walking on a tightly 

stretched wire, which is an example of classical mechanics, and 

realize the striking difference between the behaviour of a 

microscopic particle and a macroscopic body.

After all, the electron is also dancing its way out on a very thin wire

but very differently.



Free particle
By free particle we mean a particle of mass m, not under the influence 

of any force. For simplicity we also assume the particle to have 0 

potential energy. If the particle moves along the x direction, then the 

Wave equation of such a particle can be given by the equation

d2Ψ /dx2+ 8π2mE Ψ/h2=0………(6)

If  
8π2mE

h2
=k2

then E=
𝐤𝟐𝐡𝟐

8π2m



Where k is any arbitrary constant. Thus, we can see that

(1) The energy of the free particle is not quantized.

(2) The energy of the free particle does not depend upon the length  

or size of the box.

(3) Since the energy is inversely proportional to mass m of the particle,

larger the particle, lower is its kinetic energy.

(4) The energy spectrum of such a particle will be continuous. The 

dissociation of an electron from an atom and the emission of α or β

rays are examples of free particles, provided they do not interact with

other particles.



OPERATORS

An operator can be defined as ‘a symbol for a certain mathematical 

procedure which transforms one function into another’.

Any mathematical operation such as integration, differentiation, division,

multiplication, addition, subtraction, square root etc can be represented

by certain symbols known as operators.



For example, the operator of evaluating the derivative with respect to x

Is represented by the symbol 
d

dx
. When this operator is applied to the 

function xn , we obtain a new function as
𝑑(𝑥𝑛)

𝑑𝑥
=nxn-1 (1)

Therefore, in general, we can write the operator as Ȃ, then Ȃ operates 

on a function f(x) and transforms it to a new function g(x).

Ȃ.f(x)=g(x)                              (2)



Mathematical operations operating on x4

S. No Operation Operator Result of 
operation on x4

1 Taking square (     )2 x8

2 Taking the square root √ x2

3 Multiplication by a 
constant k

X k kx4

4 Differentiation with 
respect to x

𝑑

𝑑𝑥

4x3

5 Integration with respect to 
x න 𝑑𝑥

𝑥5

5
+ c



The function on which an operation is carried out is often called an 

‘operand’.

In fact equation (2) does not mean that the function is multiplied by

the operator. The operator does not have any meaning when it stands 

alone.                        

If               ȂΨ=aΨ,       then Ȃ≠ 𝒂

An operator is generally denoted by a capital letter with a superscript

symbol (ᶺ) overhead. For example, Ȃ and Ĥ.



Operator algebra
Addition and subtraction of operators.

New operators can be created by addition and subtraction of operators.

If Ȃ and Ê are two different operators , then new operators are

(Ȃ+ Ê)f= Ȃf+ Êf  

and (Ȃ- Ê)f= Ȃf- Êf 

Multiplication of operators

The consecutive operations with two or more operators on a function 

may be called multiplication of operators.

If Ȃ and  Ê represent two different operators and f the operand

Then the expression Ȃ.Êf means the function f is first operated upon by 

Ê to obtain a new function f’ as:



Êf=f’

Then f’ is operated upon by Ȃ to obtain the final function f” as

Ȃf’= f”                                   (3)

The order of operation is always from right to left as they are written.

If the same operator is applied several times in succession, it is written  

with a power. Thus,

Ȃ Ȃf= Ȃ2f                                (4)

and         Ȃ Ȃ Ȃ Ȃ……..n times…f= Ȃn f    



Is multiplication of operators commutative
Let us see whether multiplication of operators is commutative or not?

Is    ȂX Ĉ = Ĉ X Ȃ   ?

Let us choose an operator Ȃ as taking the derivative wrt x and 

operator Ĉ for multiplication by x. Then,

Ȃ. Ĉf(x) = Ȃ[Ĉf(x)]= Ȃ[x. f(x)]

=x
𝑑𝑓(𝑥)

𝑑𝑥
+ f(x)                          (5)

Ĉ. Ȃf(x)= Ĉ [Ȃf(x)]= Ĉ[
𝑑𝑓(𝑥)

𝑑𝑥
]

=x 
𝑑𝑓(𝑥)

𝑑𝑥
(6)



We can see from equations (5) and (6) that 

Ȃ Ĉf(x) ≠ Ĉ Ȃf(x)

This shows that the result of a series of operations is often different 

depending upon the sequence in the operations are performed.

If the outcome of the two operations is same, regardless of the sequence

in which the operations are performed, the operators are said to 

commute.

The above two operators do not commute. This distinguishes an operator 
algebra from the ordinary algebra where for any two numbers a and b,

axb=bxa



The commutator
Using two operators, Ȃ and Ĉ it is possible to construct a new operator

Ȃ Ĉ - Ĉ Ȃ, called the commutator of the two operators Ȃ and Ĉ, usually

written as [Ȃ, Ĉ].

If these two operators commute then 

[Ȃ, Ĉ]= Ȃ Ĉ - Ĉ Ȃ=0

Since an operator by itself does not have any meaning, the commutator

Will operate on a function. 

Thus,                       [Ȃ, Ĉ]Ψ=( Ȃ Ĉ - Ĉ Ȃ) Ψ =0

Therefore this commutator means multiplication by 0.

We have seen in equations (5) and (6) that the two operators do not 

commute. This has implications in measurement of certain variables.



Commutator and the uncertainty principle
When the commutator is zero, or when the operators do not commute

Those are the operators whose simultaneous measurement with 

accuracy is not possible.

These pair of operators will not commute which are the pair of 

variables in the uncertainty principle.

This essentially means that the multiplication of the following pair of 

operators will not be commutative:

• Position and momentum i.e., [x, px] ≠ 0

• Energy and time period i.e., [E, t] ≠ 0

• Angular momentum and theta i.e., [L,ϴ]≠ 0



Linear operator
If an operation on sum of two functions gives the same result as the 

sum of operations on the two functions separately, then the operator is 

said to be linear.

Thus, the operator Ȃ is said to be linear if

Ȃ(f+ g)= Ȃf+ Ȃg

And                                Ȃcf=c Ȃf  where c is a constant

For example, taking derivative is a linear operator as
𝑑

𝑑𝑥
(f+ g)= 

𝑑

𝑑𝑥
f+ 

𝑑

𝑑𝑥
g 

While taking square root is not a linear operator:

√(f+ g) ≠ √f + √g



Laplacian operator
The Laplacian operator is of particular interest in quantum chemistry.

The operator is defined as

𝛁𝟐=
𝛛𝟐

𝛛𝐱𝟐
+ 𝛛𝟐

𝛛𝐲𝟐
+ 𝛛𝟐

𝛛𝐳𝟐

Since the function Ψ depends upon the variables x,y,z the partial 

derivatives are written as ‘del’(𝝏).

The double derivative of  wave function is taken wrt x,y,z and the values 

added to give the value of Kinetic energy.

The Laplacian operator and the potential energy operator is added 

to get the Hamiltonian operator. 
−h2

8π2m
. 𝛁𝟐 +U= Ĥ

[  
−h2

8π2m
. 𝛁𝟐 +U] Ψ=EΨ 

Ĥ Ψ=E Ψ
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